(MS) in patients presenting with both non-enhancing and enhancing brain lesions, cranial nerve enhancement and spinal cord lesions.

CASE REPORT
A 37-year-old woman was hospitalized because of rapidly progressive neurological symptoms. Clinical history and examination revealed blurred vision, left facial numbness, left-sided hearing loss, dysesthesia in both legs, as well as gait ataxia, and fatigued disturbances. Previous medical history included systemic sarcoidosis with panuveitis and vasculitis.

Brain MR imaging demonstrated multiple T2 and FLAIR hyperintense lesions in the periventricular and juxtaocular white matter. Non-enhancing, homogeneous and ringlike enhancing lesions as well as open-ring enhancing lesions were observed.

Cranial nerve enhancement of the left trigeminal nerve, including the intrapontine trajectory, was noticed. More subtle enhancement of the right trigeminal nerve, left facial nerve, optic nerve/chiasma and pituitary stalk enhancement was seen. Leptomeningeal enhancement was absent.

MR angiography was normal. Spinal MR imaging displayed gadolinium-enhancing high-signal intensity T2-lesions within the cervical and thoracic spinal cord. High-resolution computed tomography (HRCT) of the chest was negative.

Relevant laboratory findings included normal angiotensin-converting enzyme (ACE) levels, unique oligoclonal IgG banding in the CSF and serum.

Repeat MR imaging of the brain after 3 and 5 weeks demonstrated a combined waxing and waning pattern of the lesions.

Because of the rapid progressive clinical deterioration of the patient, brain biopsy was performed. Pathology revealed lymphocytic inflammatory changes in the white matter and leptomeninges. Myelin staining showed white matter demyelination. Final diagnosis of MS was established.

DISCUSSION
MS and neurosarcoidosis (NS) share MR imaging features: both non-enhancing and enhancing parenchymal lesions, cranial nerve enhancement and spinal cord involvement. Open-ring enhancement after gadolinium injection has been described in the literature as being very specific for demyelinating lesions.

CONCLUSION
Open-ring enhancement of white matter lesions is in our experience a key finding allowing to differentiate between the MR pattern of NS and MS, prompting the diagnosis of the latter, which was confirmed by the pathological findings.

P9:166

APLASIA OF THE INTERNAL CAROTID ARTERY: MRA FINDINGS

K. SYRGIANNIS1, I. NIKAS1, M. THEOFANOPOULOU2, M. GAVRA3
1Imaging Dpt, Agia Sofia Children’s Hospital, ATHENS, GREECE
2Imaging Dpt, Ionia iatriki, Diagnostic Center, ATHENS, GREECE

PURPOSE
Aplasia and hypoplasia of the internal carotid artery (ICA) are rare congenital anomalies, mostly incidentally found. Symptomatic cases, usually present with acute ischemia. A number of intracranial vascular anomalies, such as aneurysms of the circle of Willis and abnormal collateral arteries are commonly associated findings. This report describes a young individual with left ICA agenesis, whose unusual presenting symptom was a mild discontinuous headache.

METHODS
A 8-year old boy was admitted in our hospital complaining of intermittent headaches. Brain magnetic resonance imaging and angiography (MRI and MRA), were performed which demonstrated absence of the left ICA.

RESULTS
The left ICA was found to be missing. The left middle cerebral artery arose from the basic artery with normal flow. The right posterior communicating artery was visualized, while both anterior cerebral arteries (A2 branches) arose from the right A1. Both vertebral arteries exhibited normal flow.

CONCLUSIONS
ICA aplasia/hypoplasia is most commonly incidentally discovered as no particular symptom suggests its presence. A daily, intermittent headache of few hours duration is uncommon. The